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Abstract. Let Bn denote the classical braid group on n strands and let the mixed braid
group Bm,n be the subgroup of Bm+n comprising braids for which the first m strands
form the identity braid. Let Bm,∞ = ∪nBm,n. We will describe explicit algebraic
moves on Bm,∞ such that equivalence classes under these moves classify oriented links
up to isotopy in a link complement or in a closed, connected, oriented 3–manifold. The
moves depend on a fixed link representing the manifold in S3. More precisely, for link
complements the moves are: the two familiar moves of the classical Markov equivalence
together with ‘twisted’ conjugation by certain loops ai. This means premultiplication by
a−1

i and postmultiplication by a ‘combed’ version of ai. For closed 3–manifolds there
is an additional set of ‘combed’ band moves which correspond to sliding moves over the
surgery link. The main tool in the proofs is the one-move Markov Theorem using L–
moves [11] (adding in-box crossings). The resulting algebraic classification is a direct
extension of the classical Markov Theorem that classifies links in S3 up to isotopy, and
potentially leads to powerful new link invariants, which have been explored in special
cases by the first author. It also provides a controlled range of isotopy moves, useful for
studying skein modules of 3–manifolds.

1. Introduction and Overview

By a classic result of H. Brunn and J.W. Alexander [1], [3] any oriented knot in S3 is
isotopic to the closure of a braid, and, by a theorem of A.A. Markov (and an improvement
due to N. Weinberg) [13], [18], [2] there is a bijection (induced by ‘closing’ the braid)
between isotopy classes of oriented links and equivalence classes of braids, the equivalence
being generated by braid isotopy and by two moves between braids: Markov conjugation
(conjugating by a crossing) and the Markov move or M–move (adding an extra crossing
at a rightmost point). In [11] a new type of braid move was introduced, the L–move
(adding an in-box crossing; see Figure 5 for abstract illustrations), and it was shown that
the equivalence relation generated by L–moves and braid isotopy gives the same bijection.
Consequently, Markov moves and Markov conjugation can be produced by L–moves (see
Figures 13 and 14).

The Markov Theorem can be regarded as a geometrical result (by thinking of braids
as geometrical objects) or as an algebraic result (by thinking of braids as elements of the
classical braid group Bn). In the latter case the two moves of the Markov equivalence
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Figure 1. A mixed link and a mixed braid

have the two well-known algebraic formulations. Similarly, the L–moves have analogous
algebraic formulations (cf. [11]; Remark 2.2).

Let now V be the complement of a link. By ‘link complements’ we mean complements
of both knots and links and by ‘links’ we always mean knots and links. All links are
considered oriented and piecewise linear (PL), but will be mostly illustrated smooth for

convenience. By the Alexander Theorem, this link is isotopic to the closure B̂ of a braid B.

So, we can write V = S3\B̂ and V can be represented in S3 by B̂. Further, let V be a
closed, connected, oriented 3–manifold (we shall simply write “closed 3–manifold”). By
classic results of Lickorish and Wallace [12], [17] V can be obtained from S3 by surgery
along a framed link with integral framings. Without loss of generality the surgery link

can be assumed to be the closure B̂ of a surgery braid B. (Note that the framing of B̂

induces a framing on the surgery braid B.) So, we can write V = χ(S3, B̂) and V can be

represented in S3 by B̂. Moreover, by the proof in [12], all components of the surgery link
can be assumed unknotted and, as can be easily seen, they can be isotoped to the closure
of a pure braid. Thus, for closed 3–manifolds we may assume B to be a pure braid.

Let now L be an oriented link in V = S3\B̂ or χ(S3, B̂). Fixing B̂ pointwise we may

represent L in S3 unambiguously by the mixed link B̂
⋃

L, which consists of the fixed

part B̂ and the ‘moving’ part L that links with B̂ (see Figure 1 for an example). A mixed

link diagram is a diagram B̂
⋃

L̃ of B̂
⋃

L on the plane of B̂. This plane is equipped
with the top-to-bottom direction of B. By the Alexander Theorem and as explained in

[11] (cf. Theorem 5.3), a diagram B̂
⋃

L̃ of B̂
⋃

L may be turned into a mixed braid
B

⋃
β with isotopic closure. (The closure of a braid is obtained by joining each pair of

corresponding endpoints by a simple arc.) This is a braid in S3 with two different sets
of strands, abstractly represented by a braid box with two differently coloured sets of
strands. The point here is that one of the two sets comprises the fixed subbraid B and
not any other Markov equivalent one. The other set of strands representing the link in
the manifold V is called the moving subbraid . See Figure 1 for an example. So, V may
be represented in S3 by the open braid B.

Consider now an isotopy of L in V . It follows from standard results of PL Topology

that L1 and L2 are two instances of an isotopy in S3\B̂ if and only if the corresponding

mixed links B̂
⋃

L1 and B̂
⋃

L2 are isotopic in S3 by an ambient isotopy which keeps B̂



ALGEBRAIC MARKOV EQUIVALENCE FOR LINKS IN 3–MANIFOLDS 3

+2 in 

type
+2

isotopy

+2

+2
type

S
3 \ B̂

Figure 2. The two types of band moves and their relation

p
p

Figure 3. The band move for mixed braids

pointwise fixed. See [15]. In terms of diagrams, the mixed link isotopy will not involve
Reidemeister moves of the fixed part.

The first stage of surgery along a framed link B̂ is to pass from S3 to the link complement

S3\B̂. Thus, an isotopy of L in χ(S3, B̂) can be viewed as an isotopy in S3\B̂, but
with the extra freedom for L to slide across the disc that the parallel curve of a framed

component of B̂ bounds in χ(S3, B̂). This isotopy move is similar to the second move of

the Kirby calculus. As noted in [11], the first part of the move is just isotopy in S3\B̂,
so we only need to consider the essential part, where a little band of L very close to the
surgery component slides over the component, according to the framing and orientation
conventions. We shall call this move a band move. A band move takes place in an
arbitrarily thin tubular neighbourhood of the component of the surgery link, so by ‘band
move’ we may unambiguously refer to both the move in the 3–space and its projection on

the plane of B̂. In terms of diagrams, the mixed link equivalence in S3 includes the band
moves (two types, depending on the orientation of the little band, which are related by
a twist of the little band; see Figure 2). For more details the reader is referred to [11],
Theorems 5.2 and 5.8.

Let’s see now how the mixed link isotopy translates on the level of mixed braids.

Definition 1. A braid band move is a move between mixed braids, which is a band move
between their closures. It starts with a little band oriented downwards, which, before
sliding along a surgery strand, gets one twist positive or negative. See Figure 3. In the
sequel we shall omit the word ‘braid’ and we shall just say ‘band move’.

Definition 2 (L–moves for mixed braids). Let B
⋃

β be a mixed braid in S3 and P
a point of an arc of the moving subbraid β, such that P is not vertically aligned with
any crossing or endpoint of a braid strand. Doing an L–move at P means breaking the
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arc at P , bending the two resulting smaller arcs slightly apart by a small isotopy and
stretching them vertically, the upper downwards and the lower upwards, and both over
or under all other arcs of the diagram, so as to introduce two new corresponding strands
with endpoints on the vertical line of P . Stretching the new strands over will give rise to
an Lo–move and under to an Lu–move. See Figure 4.

Using a small braid isotopy, an L–move can be equivalently seen with a crossing (positive
or negative) formed. See Figure 5.

Clearly, two mixed braids that differ by an L–move have isotopic closures, since the L–
move corresponds to introducing a twist in the mixed link. L–moves and mixed braid iso-
topy generate an equivalence relation on mixed braids called L–equivalence. Our method
of proving the one–move (and the classical) Markov Theorem (Theorem 2.3 in [11]) en-
sures that the arcs of the diagram that are oriented downwards do not participate in the
proof. This led us to the following result (Theorem 5.5 and Theorem 5.10), which is our
starting point in this paper.

Theorem 1 (Geometric Markov Theorem for V = S3\B̂ or χ(S3, B̂)). Two oriented links

in S3\B̂ are isotopic if and only if any two corresponding mixed braids in S3 differ by
mixed braid isotopy and a finite sequence of L–moves that do not touch the fixed subbraid
B.

Moreover, if the two links lie in χ(S3, B̂), the mixed braids differ by mixed braid isotopy,
by L–moves that do not touch the fixed subbraid B and by braid band moves.

The paper is concerned with the corresponding algebraic formulation.
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The braid structures for links in these manifolds (as well as for links in handlebodies)
have been established and studied in [10]. These are either the extended braid groups
Bm,n, whose elements are called algebraic mixed braids and they have the first m strands
forming the identity subbraid (see Figure 6 for an example), or appropriate cosets Cm,n

of these groups, that depend on the specific manifold. More precisely, Bm,n has the
presentation:

Bm,n =

〈
a1, . . . , am,
σ1, . . . , σn−1

∣∣∣∣∣∣∣∣∣∣

σkσj = σjσk, |k − j| > 1
σkσk+1σk = σk+1σkσk+1, 1 ≤ k ≤ n− 1
aiσk = σkai, k ≥ 2, 1 ≤ i ≤ m
aiσ1aiσ1 = σ1aiσ1ai, 1 ≤ i ≤ m
ai(σ1arσ

−1
1 ) = (σ1arσ

−1
1 )ai, r < i.

〉

where the generators ai and σj are as illustrated in Figure 7.

The groups Bm,n are the appropriate braid structures for studying knots and links in
the complement of the m–unlink or a connected sum of m lens spaces of type L(p, 1) or
a handlebody of genus m. For the first two cases of manifolds it is easy to formulate the
analogue of Markov Theorem algebraically (see first two examples of Section 4). In [5] an
algebraic formulation of the Markov Theorem for handlebodies was proven in terms of the
groups Bm,n, one version using algebraic L–moves and another using Markov equivalence
(cf. [5], Theorems 4 and 5). In that case there was no surgery involved. The conceptual
difficulty there was related to the fact that conjugations by the ai’s were not permitted.

For a generic V = S3\B̂ or χ(S3, B̂) the fixed subbraid B is not the identity braid.
Parting a mixed braid means to separate its endpoints into two different sets, so that the
resulting braids have isotopic closures. Figure 9 illustrates different partings of an abstract
mixed braid. Combing a parted mixed braid means to separate the fixed subbraid from
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Figure 8. An abstract parted and combed mixed braid

the moving part, using mixed braid isotopy. See Figure 8 for an abstract illustration.
These operations are discussed in detail in Section 2 and Section 3. By parting and
combing mixed braids, it was shown in [10], Section 6 that knots and links in V may be
represented by mixed braids in the groups Bm,n followed by the natural embeddings of B
in the groups Bm+n. Hence, that the braid structures related to V are the cosets of the
subgroups Bm,n in the groups Bm+n (n ∈ N), containing the embedded fixed subbraid B.

The main results: The main results of this paper are Theorem 4 and Theorem 5 in
Section 3. Theorem 4 gives the algebraic braid equivalence of combed mixed braids for
knot complements and Theorem 5 gives the algebraic braid equivalence of combed mixed
braids for closed 3–manifolds. Our strategy for proving these Theorems is the following.
We first part the mixed braids and we translate the L–equivalence and the braid band
moves of Theorem 1 to an equivalence of parted mixed braids. Here the generators of the
groups Bm,n become apparent in the equivalence. Also, the braid band moves assume
a special form. These are done in Section 2. See Theorem 2 for link complements, and
Lemma 5 and Theorem 3 for closed 3–manifolds.

In Section 3 we comb the parted mixed braids and we translate the parted mixed
braid equivalence to an equivalence of algebraic mixed braids. For both link complements
and closed 3–manifolds, Markov move and Markov conjugation remain equivalence moves
between combed and algebraic mixed braids. But in place of the conjugation by a ‘loop’
ai we need to introduce the twisted conjugation, which takes into account the combing of
the loop through the fixed subbraid:

β ∼ a∓1
i βρ±1

i

where ρi is the combing of the loop ai through B, for β, ai, ρi ∈ Bm,n. See Figure 19 for
illustrations.

Moreover, a parted band move after combing is the composition of an algebraic band
move with the combing of the parallel strand through the surgery subbraid. An algebraic
band move is a braid band move between elements of the groups Bm,n and it has the
algebraic expression:

β1β2 ∼ β′1 tpk

k,n σ±1
n β′2

where β1, β2 ∈ Bm,n, tk,n is a Markov conjugate of the loop ak, pk ∈ Z is the framing of
the kth surgery component of the surgery link and β′1, β

′
2 ∈ Bm,n+1 are the words β1, β2,

but with certain substitutions that indicate the pulling of the parallel strand to the right
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of the braid. See Definition 7 and Figure 20. Then, a combed band move has the algebraic
expression:

β1β2 ∼ β′1 tpk

k,n σ±1
n β′2 rk

where rk is the combing of the parted parallel strand to the kth surgery strand through
the surgery braid. For an illustration here see Figure 21.

Finally, in Section 4 we give explicit examples, including complements of daisy chains,
the lens spaces, the complement of the Borromean rings or a closed 3–manifold obtained
by surgery along them. We also discuss the case where the surgery braid is not a pure
braid (Lemma 9) and we present as an example the complement of a trefoil or a manifold
obtained by surgery along it.

This paper is sequel to [11], [10] and [5]. It sets out the necessary algebraic formalism
for constructing knot invariants in 3–manifolds using braid machinery, for example via
constructing Markov traces on appropriate algebras, quotients of the group algebras of
the braid groups Bm,n. (See [6] for the classical case of links in S3). In the case m = 1,
B1,n is the Artin group of type B. See, for example, [9] and references therein for the
construction of the analogues of the 2–variable Jones polynomial (homflypt) for links in
the solid torus. The case of L(p, 1) is being studied by the first author with J.H. Przytycki.
Theorem 5 gives a very good control over the band moves of links in closed 3–manifolds,
and this is very useful for the study of skein modules of 3–manifolds. For skein modules
of 3–manifolds see, for example, [14] and references therein.

A final comment is now due. In our set–up the manifold is represented in S3 by a fixed
link. In the case of a closed 3–manifold the surgery link is not unique up to isotopy. In
fact, it may be altered via the Kirby calculus [7]. Then the corresponding surgery braids
are equivalent under moves described in [8]. One could then consider combining the mixed
braid equivalence given in the present paper with the braid equivalence of [8]. This will
be the subject of a subsequent paper.

2. Markov equivalence for parted mixed braids

This section is an intermediate step towards the algebrization of Theorem 1. Here the
mixed braids resulting from the mixed links have all, say m, strands of the fixed part B
occupying the first m positions of the mixed braid.

Definition 3. A parted mixed braid is a mixed braid B
⋃

β on m + n strands, such that
the first m endpoints are those of the subbraid B and the last n endpoints are those of
β. Parted mixed braids are denoted in the same way as mixed braids. We number their
fixed strands from 1 up to m and their moving strands from 1 up to n. (See left hand
side of Figure 14 for an abstract illustration.)

Lemma 1. Every mixed braid may be represented by a parted mixed braid with isotopic
closure (cf. Section 6 in [10], compare with Lemma 1 in [5]).

Proof. Indeed, let B
⋃

β be a mixed braid. To see this we simply attach arbitrarily arrays
of labels ‘o’ or ‘u’ to corresponding pairs of endpoints of the moving subbraid β, with
as many entries as the number of fixed strands on their right, and we pull the strands
of corresponding endpoints to the right, over or under each strand of B that lies on
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Figure 9. Parting a mixed braid – the standard parting

their right, according to the label in the array of the pulled strands. We start from the
rightmost pair respecting the position of the endpoints. See the first two illustrations of
Figure 9 for the parting of an abstract mixed braid. Obviously, the closures of the initial
and of the parted mixed braid are isotopic (they differ by planar isotopy and by mixed
Reidemeister II moves). ¤

It follows that two different partings of a mixed braid give rise –upon closure– to isotopic
mixed links. For this reason we could fix the pulling of the moving strands during the
parting process to be always over or always under each strand of B that lies on its right.
If the pulling is always over we shall refer to it as the standard parting. See the two right
illustrations of Figure 9.

Pulling a moving strand ‘under’ a fixed strand instead of ‘over’, it simply corresponds
to the fact that the closure of the moving strand crosses a hypothetical closing arc k of
the fixed subbraid B, and this is an allowed isotopy move in the manifolds considered
here. See Figure 10. (We note that this is not true in the case of handlebodies and this
is the reason why conjugation by the generators ai is not permitted; see [5] for a detailed
analysis.)

Lemma 2 below gives the relation of an arbitrary parting with the corresponding stan-
dard parting, and it is very instructive, as it brings the ‘loops’ ai into the parted braid
equivalence. Note that the elementary algebraic mixed braids ai and their inverses, to-
gether with the crossings σj (all defined in Figure 7) are clearly the geometric generators
of the moving part of a parted mixed braid.

Let now Cm,n denote the set of parted mixed braids on n moving strands related to

V = S3\B̂ or χ(S3, B̂). By adding an extra moving strand on the right of a parted mixed
braid on n moving strands, Cm,n embeds naturally into Cm,n+1. Let Cm,∞ :=

⋃∞
n=1 Cm,n

denote the disjoint union of all sets Cm,n. We define below some moves in Cm,∞.

Definition 4. (1) Loop conjugation of a parted mixed braid in Cm,n is its concatenation
from above by a loop ai (or by a−1

i ) and from below by a−1
i (corr. ai).

(2) Markov conjugation of a parted mixed braid in Cm,n is its concatenation from above
by a crossings σj (or by σ−1

j ) and from below by σ−1
j (corr. σj).
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(3) A parted L–move is defined to be an L–move between parted mixed braids. (See left
hand illustration of Figure 15.)

(4) An M–move is the insertion of a crossing σ±1
n at the right hand side of a parted mixed

braid on n moving strands. Undoing an M–move is the reverse operation. See Figure 13.

Lemma 2. Consider a mixed braid on m + n strands and an arbitrary parting of it
in Cm,n. Then, up to Markov conjugation, this parting differs from its corresponding
standard parting by a finite sequence of loop conjugations.

Proof. By an inductive argument we may assume that all moving strands from the 1st up
to the (j− 1)st are pulled ‘over’ all the fixed strands that lie on their right. Consider now
the jth moving strand. Upon parting, this lands on the jth position of the moving part
of the resulting parted mixed braid. See Figure 11. By a mixed braid isotopy we bring
the jth moving strand on top of the other moving strands. Note that the braid isotopy
is independent of the parting labels attached to the jth moving strand. Then by Markov
conjugation by the word (σ1 . . . σj−1) we bring the jth moving strand to the first position
of the moving subbraid. See top row of Figure 11.

Let now the parting label of the original jth moving strand for the ith fixed strand be
‘under’. By a second inductive argument we may assume that the parting labels of the
original jth strand are all ‘over’ for the (i + 1)st up to the mth fixed strand. Then,
conjugation by ai changes the label ‘under’ to ‘over’. By applying once more mixed braid
isotopy and Markov conjugation by the word (σ−1

j−1 . . . σ−1
1 ) we obtain a parted mixed braid

identical to the initial one except for the place of the one crossing in question, which is
switched. See second row of Figure 11. Continuing backwards with the remaining parting
labels of the jth moving strand we change them all in this manner to ‘over’, and this ends
the proof. ¤
Remark 1. It follows from the proof of Lemma 2 that changing a parting label from
‘under’ to ‘over’ corresponds in Cm,∞ to conjugation by some ai.

Lemma 3. A mixed braid with an L–move performed can be parted to a parted mixed
braid with a parted L–move performed. (Compare with Lemma 2 in [5].)

Proof. If the L–move is an Lo–move we part its strands by pulling them to the right and
over all other strands in between. Then the crossing of the L–move slides over to the
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Figure 11. Change of parting labels ←→ conjugation by ai

right by a braid isotopy. See Figure 12. The case of an Lu–move is analogous: here we
pull the two strands under the fixed strands in between. ¤

Lemma 4. Markov conjugation and M–moves can be realized by a sequence of parted
L–moves. Conversely, a parted L–move is a composition of an M–move and Markov
conjugation.

Proof. It is clear that an M–move is a special case of a parted L–move. The one-move
Markov Theorem in S3 implies that Markov conjugation in S3 can be realized by a se-
quence of L–moves (cf. Subsection 4.1 in [11]). The same arguments apply to both link
complements and closed 3–manifolds. But we would like to give a second direct proof of
Lemma 4, which is an adaptation for the case of knot complements and closed 3–manifolds
of a direct proof for the classical case of S3, given by Reinhard Häring-Oldenburg. In
Figure 14 we start with a parted mixed braid conjugated by σj. After performing an
appropriate parted Lo–move, braid isotopy and undoing another parted Lo–move we end
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up with the original mixed braid free of conjugation by the σj. Conversely, as it becomes
clear from Figure 15, a parted L–move is a composition of an M–move and Markov
conjugation. ¤

We are now in a position to state two versions of the analogue of the Markov Theorem

for parted mixed braids in S3\B̂.

Theorem 2 (Parted Version of Markov Theorem for V = S3\B̂). Two oriented links in

S3\B̂ are isotopic if and only if any two corresponding parted mixed braids in Cm,∞ differ
by a finite sequence of parted L–moves and loop conjugations.
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Figure 15. Parted L–move ←→ M–move and Markov conjugation
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Figure 16. A parted band move

Equivalently, two oriented links in S3\B̂ are isotopic if and only if any two corre-
sponding parted mixed braids in Cm,∞ differ by a finite sequence of M–moves, Markov
conjugations and loop conjugations.

Proof. It follows immediately from Theorem 1 for V = S3\B̂ and from Lemmas 2, 3 and
4. ¤

We would like to extend Theorem 2 to parted mixed braids in closed 3–manifolds.

Lemma 5 below sharpens the band moves of Theorem 1 for χ(S3, B̂) and it shows the
effect of parting on band moves.

Definition 5. A parted band move is defined to be a band move between parted mixed
braids, such that: it takes place at the top part of the braid (before any surgery braid
crossings are encountered) and the little band starts from the last strand of the moving
subbraid and it moves over each moving strand and each component of the surgery braid,
until it reaches from the right the specific component. After the band move is performed
we apply to the resulting mixed braid the standard parting, bringing the new strands over
to the last position of the moving part.

See Figure 16 for an example of a parted positive band move, where the moving part has
been simplified to the identity braid.

Lemma 5. A band move may be always assumed, up to L–equivalence, to take place at
the top part of a mixed braid and on the right of the specific surgery strand.
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Moreover, performing a band move on a parted mixed braid and then parting, the result
is equivalent, up to L–moves and loop conjugation, to performing a parted band move.

Proof. In a mixed braid B
⋃

β1 consider a little band that has approached a specific
surgery strand of B from the right and is about to perform a band move. Pull the little
band up to the top along the surgery strand. See illustrations 1 and 3 of Figure 17. Then
do braiding to obtain a mixed braid B

⋃
β2. This is L–equivalent to B

⋃
β1. Note that the

edge arc of the little band is still there in B
⋃

β2, because it is a down-arc. Now, using this
arc, perform a top band move in B

⋃
β2 and call the resulting mixed braid B

⋃
α2. See

illustration 4 of Figure 17. Let also B
⋃

α1 be the mixed braid obtained after performing
the band move in the first mixed braid B

⋃
β1. See illustration 2 of Figure 17, but consider

only the braid between the dotted lines. Then B
⋃

α1 differs from B
⋃

α2 by exactly the
same sequence of L–moves, L1, . . . , Lk say, that separate B

⋃
β1 and B

⋃
β2, since the

isotopies separating the corresponding closures are identical. Compare the corresponding
diagrams of Figure 17. Thus we showed that:

B
⋃

β1
general band move∼ B

⋃
α1

⇐⇒
B

⋃
β1

L1,...,Lk∼ B
⋃

β2
top band move∼ B

⋃
α2

L−1
1 ,...,L−1

k∼ B
⋃

α1.

The first statement of the Lemma is proved. Consider now the same setting as above,
but with B

⋃
β1 being a parted mixed braid. Perform on it a band move and part the

resulting new mixed braid by pulling the two new strands over all strands in between to
the last position of the moving part. See illustration 2 of Figure 17, where the parting
is now included. At the same time pull the little band of B

⋃
β1 up to the top and then

horizontally to the right, over all strands in between, until it reaches the last position
of the moving part. Then do a similar pull-back to the left up to the specified surgery
strand. See illustration 5 of Figure 17. Now perform a parted band move at the place
marked with a shaded disc. See illustration 6 of Figure 17. As above, this last mixed braid
operation does not create any new up-arcs and it does not interfere with the band move.
Finally, part by the standard parting the new strands created by braiding the up-arcs
from the pulling along the surgery strand, and part last the new strands created from the
parted band move, by pulling them over all strands in between to the last position of the
moving part. Clearly, the two pairs (related to (1, 5) and (2, 6) of Figure 17) of parted
mixed braids involved differ by the same parted L–moves together with loop conjugation
that comes from the parting.

Further note that, by braid isotopy and loop conjugation, the p twists of a general band
move may take place anywhere along the surgery strand, so just as well at the top, as
in Definition 5 of a parted band move. Thus, we showed that a band move on a parted
mixed braid can be accomplished with a parted band move, up to L–moves and loop
conjugation.

Finally, if the little band lies on the left of the surgery component we pull it horizontally
over the surgery strand and to the right and then we pull it slightly back to the left, so
that it approaches the surgery strand from the right. Up to here it is only braid isotopy.
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1 3 5
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general
band
move

Figure 17. The proof of Lemma 5

We now perform a band move before and a band move after and we notice that the two
final mixed braids differ by conjugating a half twist of the framing. In any case, after
parting the two final mixed braids are the same. ¤

Then Theorem 1 for χ(S3, B̂) and Lemma 5 extend Theorem 2 to the following.

Theorem 3 (Parted Version of Markov Theorem for χ(S3, B̂)). Two oriented links in

χ(S3, B̂) are isotopic if and only if any two corresponding parted mixed braids in Cm,∞
differ by a finite sequence of parted L–moves, loop conjugations and parted band moves.

Equivalently, two oriented links in χ(S3, B̂) are isotopic if and only if any two corre-
sponding parted mixed braids in Cm,∞ differ by a finite sequence of M – moves, Markov
conjugations, loop conjugations and parted band moves.
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. .
 .

B

Figure 18. Artin’s combing separates the fixed part from the moving part

3. Markov equivalence for combed and algebraic mixed braids

In this section we explain the combing of parted mixed braids and we translate the
equivalence of Theorem 2 and Theorem 3 to equivalence of algebraic mixed braids.

Let V = S3\B̂ or χ(S3, B̂). Unless V is the complement of the m–unlink or a connected
sum of m lens spaces of type L(p, 1), where the fixed subbraid B is the identity braid on
m strands, concatenating two elements of Cm,n is not a closed operation, since it alters
the braid description of the manifold. So, the set Cm,n of parted mixed braids is not a
subgroup of Bm+n. Yet, as shown in [10], Section 6, using Artin’s combing for pure braids,
the moving part of a parted mixed braid can be combed away from the fixed subbraid,
so that this latter remains free of mixed linking at the bottom of the parted mixed braid.
Thus, the parted mixed braid splits into the concatenation of two parted mixed braids:
the ‘algebraic’ part at the top, which has as fixed subbraid the identity braid on m strands
and the ‘coset’ part at the bottom consisting of the fixed braid B embedded naturally in
Bm+n. See Figure 18 for an abstract illustration. The result will be called a combed mixed
braid.

Recall that the algebraic part of a combed mixed braid is called algebraic mixed braid
and it is an element of Bm,n. (Recall Figure 6 for an example.) The set Bm,n of all
algebraic mixed braids on m fixed strands and n moving strands is closed under the usual
concatenation and with respect to inverses. Thus, it is a subgroup of Bm+n. The set Cm,n

of combed mixed braids is a coset of Bm,n in Bm+n (cf. Proposition 1 in [10]). Thus, for a
fixed manifold V , an element in Bm,n represents unambiguously an element in Cm,n, hence
an oriented link in V . The braid group Bm,n embedds naturally into the group Bm,n+1

and we shall denote by Bm,∞ :=
⋃∞

n=1 Bm,n the disjoint union of all braid groups Bm,n.

We would like to restate the Markov equivalence in Theorems 2 and 3 for parted mixed
braids in terms of their corresponding algebraic mixed braids after combing. For this we
need to understand how exactly the combing is done and how it affects the parted braid
equivalence moves.
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Note that, if we regard a parted mixed braid as an element of the classical braid
group Bm+n, then the crossings σj of the moving part commute with the crossings of
the fixed part, so they are not affected by combing. More precisely, if Σk denotes the
crossing between the kth and the (k + 1)st strand of the fixed subbraid, then for all
j = 1, 2, . . . , n− 1 and k = 1, 2, . . . , m− 1 we have the relations:

Σkσj = σjΣk.

Thus the only generating elements of the moving part that are affected by the combing
are the loops ai. In Lemma 6 below we give formuli for the effect of combing on the ai’s.

Lemma 6. The crossings Σk, for k = 1, . . . , m − 1, and the loops ai, for i = 1, . . . , m,
satisfy the following ‘combing’ relations:

• Σka
±1
k = a±1

k+1Σk

• Σka
±1
k+1 = a−1

k+1a
±1
k ak+1Σk

• Σka
±1
i = a±1

i Σk if i 6= k, k + 1
• Σ−1

k a±1
k = aka

±1
k+1a

−1
k Σ−1

k

• Σ−1
k a±1

k+1 = a±1
k Σ−1

k

• Σ−1
k a±1

i = a±1
i Σ−1

k if i 6= k, k + 1.

Moreover, since B is assumed to be a pure braid for V = χ(S3, B̂), it is useful to give the
‘combing’ relations between the crossings Σk

2 and the loops ai. Indeed we have:

• Σk
2a±1

k = a−1
k+1a

±1
k ak+1Σk

2

• Σk
2a±1

k+1 = a−1
k+1a

−1
k a±1

k+1akak+1Σk
2

• Σk
2a±1

i = a±1
i Σk

2 if i 6= k, k + 1
• Σ−2

k a±1
k = akak+1a

±1
k a−1

k+1a
−1
k Σ−2

k

• Σ−2
k a±1

k+1 = aka
±1
k+1a

−1
k Σ−2

k

• Σ−2
k a±1

i = a±1
i Σ−2

k if i 6= k, k + 1.

Proof. We illustrate in Figure 19 the first three principal relations for Σ1. For arbitrary
Σk the proof is obviously analogous. The relations for the crossings Σ−1

k and for Σk
2 follow

easily from the ones for Σk. ¤

In Bm,∞ we define now the following moves.

Definition 6. (1) Twisted loop conjugation is defined to be a combed loop conjugation
and it has the algebraic expressions:

β ∼ a∓1
i βρ±1

i

for β, ai, ρi ∈ Bm,n, where ρi is the combing of the loop ai through the fixed braid B.
(Note that the combing of the loop a−1

i through the fixed braid B is ρ−1
i .)

(2) Algebraic Markov conjugation is Markov conjugation between elements of Bm,∞ and
it has the algebraic expression:

α ∼ σ±1
j ασ∓1

j

where α, σj ∈ Bm,n.
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Figure 19. The relations between Σ1 and the ai’s

(3) An algebraic L–move is a parted L–move between elements of Bm,∞. From Figure
15 one can easily derive the following algebraic expressions for algebraic Lo–moves and
algebraic Lu–moves respectively.

α = α1α2 ∼ σ−1
i . . . σ−1

n α1σ
−1
i−1 . . . σ−1

n−1σ
±1
n σn−1 . . . σiα2σn . . . σi

α = α1α2 ∼ σi . . . σnα1σi−1 . . . σn−1σ
±1
n σ−1

n−1 . . . σ−1
i α̃2σ

−1
n . . . σ−1

i

where α1, α2 ∈ Bm,n.

(4) An algebraic M–move is an M–move between elements of Bm,∞ and it has the
algebraic expression:

α1α2 ∼ α1σ
±1
n α2

where α1, α2 ∈ Bm,n.

Lemma 7. Two parted mixed braids that differ by Markov conjugation by some σj,
resp. by an M–move, resp. by a parted L–move, after combing they give rise to algebraic
mixed braids that differ by algebraic Markov conjugation by the σj, resp. by an algebraic
M–move, resp. by an algebraic L–move.

Proof. As observed earlier, the crossings of the moving part commute with the crossings
of the fixed part. Thus, Markov conjugation, the M–moves and the parted L–moves all
commute with combing. Moreover, the two parted mixed braids are otherwise identical, so
they are both combed in exactly the same manner. Therefore, after combing, the combed
mixed braids as well as their corresponding algebraic mixed braids will just differ by
algebraic Markov conjugation, resp. an algebraic M–move, resp. an algebraic L–move. ¤
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We are now in a position to restate Theorem 2 in terms of algebraic mixed braids.

Theorem 4 (Algebraic Markov Theorem for S3\B̂). Two oriented links in S3\B̂ are
isotopic if and only if any two corresponding algebraic mixed braid representatives in Bm,∞
differ by a finite sequence of the following moves:

(1) Algebraic M–moves: α1α2 ∼ α1σ
±1
n α2, for α1, α2 ∈ Bm,n,

(2) Algebraic Markov conjugation: α ∼ σ±1
j ασ∓1

j , for α, σj ∈ Bm,n,

(3) Twisted loop conjugation: β ∼ a∓1
i βρ±1

i , for β, ai, ρi ∈ Bm,n, where ρi is the
combing of the loop ai through B,

or, equivalently, by a finite sequence of the following moves:

(1′) algebraic L–moves (see algebraic expressions in Definition 6),

(2′) Twisted loop conjugation.

Proof. By Lemma 7, M–moves and Markov conjugation get combed to algebraic M–
moves and algebraic Markov conjugation. Thus, by Theorem 2, we only have to observe
that conjugating a parted mixed braid by a loop ai induces after combing the twisted
conjugation on the level of the corresponding algebraic braids. Lemma 6 explains how to
do efficiently the combing of the loops a±1

i . ¤

In order to extend Theorem 4 to mixed braids in χ(S3, B̂) we need to understand how a
parted band move is combed through the surgery braid B and to give algebraic expressions
for parted band moves between algebraic mixed braids.

Definition 7. An algebraic band move is defined to be a parted band move between
elements of Bm,∞. See Figure 20 for an abstract example. Setting

λn−1 := σn−1 . . . σ1 and tk,n := σn . . . σ1akσ
−1
1 . . . σ−1

n ,

an algebraic band move has the following algebraic expression:

β1β2 ∼ β′1 tpk

k,n σ±1
n β′2,

for β1, β2 ∈ Bm,n, where β′1, β
′
2 ∈ Bm,n+1 are the words β1, β2 respectively, with the

substitutions:

a±1
k ←→ [(λ−1

n−1σ
2
nλn−1) ak]

±1

a±1
i ←→ (λ−1

n−1σ
2
nλn−1) a±1

i (λ−1
n−1σ

2
nλ

−1
n−1), if i < k

a±1
i ←→ a±1

i , if i > k.

Moreover, a combed algebraic band move is a parted band move that is the composition
of an algebraic band move with the combing of the parallel strand:

β1β2 ∼ β′1 tpk

k,n σ±1
n β′2 rk

where rk is the combing of the parted parallel strand to the kth surgery strand through
the surgery braid.

In Figure 20 note that the isotopy of the little band in the dotted box is treated as
‘invisible’, that is, as identity in the braid group.
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Figure 20. An algebraic band move and its algebraic expression

Lemma 8. Performing a parted band move on a parted mixed braid and then combing,
the result is the same as combing the mixed braid and then performing an algebraic band
move.

Proof. The parted band move takes place at the top part of the braid, so it resembles an
algebraic band move. Therefore, we just have to consider the behaviour of the parallel
strand with respect to combing. On the other hand, the fact that a band move takes place
very close to the surgery strand ensures that the loops a±1

k around the specific surgery
strand get combed in the same way before and after the band move.

So, when we perform a parted band move on a parted mixed braid we comb away all
the loops a±1

k and we leave last the combing of the parallel moving strand. This combing
will be the same in either case of the statement of the Lemma. In Figure 21 we show that
using a small braid isotopy at the bottom of the algebraic part we create an algebraic band
move followed by the combing through the dotted box P of the parted parallel strand.
Note, finally, that the combing of the parallel strand leaves clear the fixed braid at the
bottom. Thus the proof is concluded. ¤

We are now in the position to state the following result.

Theorem 5 (Algebraic Markov Theorem for χ(S3, B̂)). Two oriented links in χ(S3, B̂)
are isotopic if and only if any two corresponding algebraic mixed braid representatives in
Bm,∞ differ by a finite sequence of the following moves:

(1) Algebraic M–moves: α1α2 ∼ α1σ
±1
n α2, for α1, α2 ∈ Bm,n,

(2) Algebraic Markov conjugation: α ∼ σ±1
j ασ∓1

j , for α, σj ∈ Bm,n,

(3) Twisted loop conjugation: β ∼ a∓1
i βρ±1

i , for β, ai, ρi ∈ Bm,n, where ρi is the
combing of the loop ai through B,



20 S. LAMBROPOULOU AND C. P. ROURKE
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Figure 21. Parted band move = algebraic band move + combing

(4) Combed algebraic band moves: For for every k = 1, . . . , m we have:

β1β2 ∼ β′1 tpk

k,n σ±1
n β′2 rk,

where β1, β2 ∈ Bm,n and β′1, β
′
2 ∈ Bm,n+1 are as in Definition 7 and where rk is the combing

of the parted parallel strand to the kth surgery strand through B,

or, equivalently, by a finite sequence of the following moves:

(1′) algebraic L–moves (see algebraic expressions in Definition 6),

(2′) Twisted loop conjugation,

(3′) Combed algebraic band moves.

Proof. By Theorem 4, we only have to consider the case where a parted band move takes
place and, by Theorem 3, we we only have to consider the behaviour of a parted band
move with respect to combing. This is done in Lemma 8, in the proof of which it is also
explained that the combing of the parallel strand gives rise to a combed algebraic band
move on the level of Bm,∞. ¤
Remark 2. We remark that tpk

k,n in Definition 7 of an algebraic band move is just a

Markov conjugate of the loop apk

k and that these are the appropriate words for defining
inductive Markov traces on quotient algebras of group algebras of Bm,n. Note also that
the words in the parentheses of the substitutions of the loops get significantly simplified
if we apply a quadratic relation on the σi’s. Moreover, in Theorem 5 we obtain the best
possible control over the band moves of links in closed 3–manifolds, and this is very useful
for the study of skein modules of closed 3–manifolds [14].

4. Special Cases, Examples

In this section we give the braid equivalences described in Theorems 4 and 5 for specific
examples of knot complements and closed 3–manifolds. We also discuss the adaptation
of the band move and braid equivalence for the case where the fixed braid B describing
the manifold is not a pure braid, and we study the example where B is the closure of a
trefoil.
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• Let V be the solid torus or the lens space L(p, 1), for a framing p ∈ Z. Then the
description of V in S3 is the unknot, and so for t := a1 and tn := σn . . . σ1 t σ−1

1 . . . σ−1
n we

have:

Two oriented links in a solid torus are isotopic if and only if any two corresponding
mixed braids in B1,∞ differ by a finite sequence of the following moves:

(1) Algebraic M–moves: α ∼ ασ±1
n , α ∈ B1,n

(2) Algebraic Markov conjugation: α ∼ σ∓1
i ασ±1

i , α, σi ∈ B1,n

(3) Loop conjugation: β ∼ t∓1βt±1, β ∈ B1,n.

Moreover, if the two links lie in L(p, 1) then the corresponding algebraic mixed braids
differ by a finite sequence of the above moves together with the following:

(4) algebraic band moves: For β ∈ B1,n we have:

β ∼ tpn σ±1
n β′,

where β′ ∈ B1,n+1 is the word β with the substitutions:

t±1 ←→ [(λ−1
n−1σ

2
nλn−1) t]

±1
.

Remark 3. Constructing all analogues of the 2–variable Jones polynomial in the solid
torus via braids has been completely studied, see [9] and references therein. These invari-
ants are related to the 3rd skein module of the solid torus [4], [16]. Moreover, this last
move (4) is used by the first author and J.H. Przytycki in order to investigate the 3rd
skein module of the lens spaces L(p, 1).

• V = the complement of the m–unlink or a connected sum of m lens spaces
of type L(p, 1). Then the fixed braid representing V is the identity braid, Im, and so
we have:

Two oriented links in the complement of the m–unlink are isotopic if and only if any two
corresponding mixed braids in Bm,∞ differ by a finite sequence of the following moves:

(1) Algebraic M–moves: α ∼ ασ±1
n , α ∈ Bm,n

(2) Algebraic Markov conjugation: α ∼ σ∓1
i ασ±1

i , α, σi ∈ Bm,n

(3) Algebraic loop conjugation: β ∼ a∓1
i βa±1

i , β ∈ Bm,n, i = 1, . . . , m.

(Compare with Theorem 5 in [5] about braid equivalence in handlebodies.)

Moreover, if the two links lie in the connected sum L(p1, 1)# · · ·#L(pm, 1), where p1, . . . , pm ∈
Z, then the corresponding algebraic mixed braids differ by a finite sequence of the above
moves together with the following:

(4) algebraic band moves: For β ∈ Bm,n and for k = 1, . . . , m we have:

β ∼ tpk

k,n σ±1
n β′,

where β′ ∈ Bm,n+1 is the word β with the substitutions:

a±1
k ←→ [(λ−1

n−1σ
2
nλn−1) a±1

k ]
a±1

i ←→ (λ−1
n−1σ

2
nλn−1) a±1

i (λ−1
n−1σ

2
nλ

−1
n−1), if i < k

a±1
i ←→ a±1

i , if i > k.
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• V = the complement of the Hopf link or a lens space L(p, q) obtained by
doing surgery along the Hopf link with framings p1, p2 ∈ Z (obtained from the
numerical equation p/q = p1 + 1/p2). The fixed braid representing V is Σ2

1 and we have:

- Relations for the twisted conjugation:

Σ2
1 · a±1

1 = a−1
2 a±1

1 a2 · Σ2
1,

Σ2
1 · a±1

2 = a−1
2 a−1

1 a±1
2 a1a2 · Σ2

1.

- Combed algebraic band moves: For β1, β2 ∈ B2,n and k = 1, 2 we have:

β1β2 ∼ β′1 tpk

k,n σ±1
n β′2 rk

where rk is the combing through the fixed braid of the parted moving strand parallel to
the kth surgery strand. For λn := σn · · · σ1, r1, r2 are given by the relations:

r1 = λna2λ
−1
n

r2 = λna−1
2 a1a2λ

−1
n .

β′1, β
′
2 ∈ B2,n+1 are the words β1, β2 with the following changes, depending on whether the

band move is taking place along the first surgery strand or along the second. That is, if
k = 1, then β′1, β

′
2 are obtained from β1, β2 by doing the substitutions:

a±1
1 ←→ [(λ−1

n−1σ
2
nλn−1) a1]

±1

a±1
2 ←→ a±1

2 .

If k = 2, then β′1, β
′
2 are obtained from β1, β2 by doing the substitutions:

a±1
1 ←→ (λ−1

n−1σ
2
nλn−1) a±1

1 (λ−1
n−1σ

2
nλn−1)

−1

a±1
2 ←→ [(λ−1

n−1σ
2
nλn−1) a2]

±1
.

• Let now V be in general the complement of a daisy chain on m rings or a lens
space of type L(p, q) obtained by doing surgery along the components, with
framings p1, . . . , pm ∈ Z (which are obtained from the continued fraction expansion of
the rational number p/q). The basic manifolds of this series are described in the previous
example. A fixed braid representing V is

Σ2
1Σ

2
3 . . . Σ2

2k−1Σ
2
2Σ

2
4 . . . Σ2

2k−2 := DC2k,

if the daisy chain consists of m = 2k rings, and

Σ2
1Σ

2
3 . . . Σ2

2k−1Σ
2
2Σ

2
4 . . . Σ2

2k := DC2k+1,

if the daisy chain consists of m = 2k + 1 rings. It is easy to verify the above braid words
by closing the odd-numbered strands by simple arcs that run under the braid and the
even-numbered strands by simple arcs that run over the braid.

- Relations for the twisted conjugation: We give relations for 2k and 2k + 1 rings by
inductive formulas. For m = 2 the relations for a±1

1 and a±1
2 are given in the previous

example. For m = 3 we have the ‘twisted’ relations:

[Σ2
1Σ

2
2] · a±1

1 = a−1
2 a±1

1 a2 · [Σ2
1Σ

2
2],

[Σ2
1Σ

2
2] · a±1

2 = (a1a2a3)
−1a±1

2 (a1a2a3) · [Σ2
1Σ

2
2],

[Σ2
1Σ

2
2] · a±1

3 = (a−1
2 a−1

1 a2a1a2a3)
−1a±1

3 (a−1
2 a−1

1 a2a1a2a3) · [Σ2
1Σ

2
2].
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Notice that the relation for a±1
1 is the same as for two rings.

Suppose now that the twisted conjugation relations are known for 2k− 2 and 2k− 1 rings
and consider 2k rings. For 1 ≤ i ≤ 2k − 3 the twisted relations for DC2k · a±1

i are the
same as those for DC2k−2 ·a±1

i . For i = 2k− 2, 2k− 1, 2k we have the following relations,
that are easy consequences of Lemma 6.

DC2k · a±1
2k−2 = (a2k−3a2k−2a

−1
2k a2k−1a2k)

−1a±1
2k−2(a2k−3a2k−2a

−1
2k a2k−1a2k)·

DC2k,
DC2k · a±1

2k−1 = (a2ka
−1
2k−2a

−1
2k−3a2k−2a2k−3a2k−2a

−1
2k a2k−1a2k)

−1·
(a2ka

−1
2k−2a

−1
2k−3a2k−2a2k−3a2k−2a

−1
2k a2k−1a2k) · DC2k,

DC2k · a±1
2k = (a2k−1a2k)

−1a±1
2k (a2k−1a2k) · DC2k.

Finally, if we have 2k + 1 rings, then for 1 ≤ i ≤ 2k − 1 the twisted relations for
DC2k+1 ·a±1

i are the same as those for DC2k ·a±1
i . For i = 2k, 2k+1 we have the following

relations, that are also easy consequences of Lemma 6.

DC2k+1 · a±1
2k = (a2k−1a2ka2k+1)

−1a±1
2k (a2k−1a2ka2k+1) · DC2k+1,

DC2k+1 · a±1
2k+1 = (a−1

2k a−1
2k−1a2ka2k−1a2ka2k+1)

−1a±1
2k+1·

(a−1
2k a−1

2k−1a2ka2k−1a2ka2k+1) · DC2k+1.

- Combed algebraic band moves: For β1, β2 ∈ Bm,n and for s = 1, . . . ,m we have:

β1β2 ∼ β′1 tps
s,n σ±1

n β′2 rs

where β′1, β
′
2 ∈ Bm,n+1 are the words β1, β2 with the substitutions:

a±1
s ←→ [(λ−1

n−1σ
2
nλn−1) as]

±1

a±1
i ←→ (λ−1

n−1σ
2
nλn−1) a±1

i (λ−1
n−1σ

2
nλn−1)

−1, if i < s
a±1

i ←→ a±1
i , if i > s

and where rs ∈ Bm,n+1 is the combing through DCm of the parted moving strand parallel
to the sth surgery strand. For any index m of DCm the combings r1, . . . , rm are given by
the following relations:

r1 = λna2λ
−1
n .

The combings r2, . . . , rm−2 are given by the following paired formulas:

r2k = λn (a−1
2k a2k−1a2ka

−1
2k+2a2k+1a2k+2) λ−1

n

r2k+1 = λn (a−1
2k+1a2k+2a

−1
2k a−1

2k−1a2ka2k−1a2ka
−1
2k+2a2k+1a2k+2) λ−1

n .

The final combings rm−1, rm depend on whether m is even or odd. For m even we have:

rm−1 = as above for odd index
rm = λn (a−1

m am−1am) λ−1
n .

For m odd we have:

rm−1 = λn (a−1
m−1am−2am−1am) λ−1

n

rm = λn (a−1
m a−1

m−1a
−1
m−2am−1am−2am−1am) λ−1

n .
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p
p

Figure 22. The band move for a non-pure surgery braid

• V = the complement of the Borromean rings or a closed manifold obtained
by doing surgery along them, with framings p1, p2, p3 ∈ Z. In particular, with
framings +1 we obtain dodecahedral space. The fixed braid representing V is

Σ−1
1 Σ2Σ

−1
1 Σ2Σ

−1
1 Σ2 := BR

- Relations for the twisted conjugation:

BR · a±1
1 = (a3a1a2a

−1
1 a−1

3 a1a
−1
2 a−1

1 )−1a±1
1 (a3a1a2a

−1
1 a−1

3 a1a
−1
2 a−1

1 ) · BR
BR · a±1

2 = (a−1
1 a−1

3 a1a3)
−1a±1

2 (a−1
1 a−1

3 a1a3) · BR
BR · a±1

3 = (a1a
−1
2 a−1

1 a−1
3 a−1

1 a3a1a2a
−1
1 a−1

3 a1a3)
−1a±1

3 ·
(a1a

−1
2 a−1

1 a−1
3 a−1

1 a3a1a2a
−1
1 a−1

3 a1a3) · BR

- Combed algebraic band moves: For β1, β2 ∈ B3,n and for k = 1, 2, 3 we have:

β1β2 ∼ β′1 tpk

k,n σ±1
n β′2 rk

where β′1, β
′
2 ∈ B3,n+1 are the words β1, β2 with the substitutions:

a±1
k ←→ [(λ−1

n−1σ
2
nλn−1) ak]

±1

a±1
i ←→ (λ−1

n−1σ
2
nλn−1) a±1

i (λ−1
n−1σ

2
nλn−1)

−1, if i < k
a±1

i ←→ a±1
i , if i > k

and where rk ∈ B3,n+1 is the combing through BR of the parted moving strand parallel
to the kth surgery strand. The combings r1, r2, r3 are given by the following relations,
which are easy consequences of Lemma 6.

r1 = λn (a3a1a2a
−1
1 a−1

3 a1a
−1
2 a−1

1 ) λ−1
n ,

r2 = λn (a−1
1 a−1

3 a1a3) λ−1
n ,

r1 = λn (a1a
−1
2 a−1

1 a−1
3 a−1

1 a3a1a2a
−1
1 a−1

3 a1a3) λ−1
n .

The case of non-pure surgery braids. A closed 3–manifold may be easier
described by a non-pure surgery braid. As noted in [11], Remark 5.11, in this case
Theorem 1 and consequently Theorems 3 and 5 still apply, but now the band moves are
more complicated to express: In this case a band move is modified so that the replacement
of the little band only twists around one of the strands of the same surgery component
and it runs in parallel to all other strands of that surgery component. See Figure 22. In
Lemma 9 below we show that such a band move may be always assumed to have a specific
form. We part such a band move at the top by pulling all parallel strands to the last
positions of the moving part, over all strands in between and respecting their order.
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~ ~or

Figure 23. Passing the little band to the right

Lemma 9. If the surgery braid B is not a pure braid, then, up to L–equivalence, a band
move may be always assumed to take place at the top part of the braid and on the right of
the rightmost strand of the specific surgery component.

Moreover, performing a band move at the top part of a mixed braid and then parting,
yields the same, up to L–equivalence and loop conjugation, as performing a parted band
move on a parted mixed braid.

Proof. Assume that the little band does not attach to the rightmost strand of the specific
surgery component. Then, as in the proof of Lemma 5, stretch the little band and its
replacement in parallel to the surgery strand and to the top or to the bottom of the mixed
braid, depending on which direction brings it to the right. See Figure 23.

If we have landed at the bottom we do appropriate L–moves to transfer the crossing
of the band move to the top. Recall Figure 14. If we have reached the rightmost strand
we stop. If not, we continue sliding the little band and its replacement till the rightmost
strand is reached. Similarly, by loop conjugations we bring the framing twists to the top
of the rightmost strand of the specific component.

If, moreover, the two mixed braids that differ by the band move are parted we apply
the same strategy as in the proof of Lemma 5 but adapted here. ¤

• As an application of the above lemma consider V to be the complement of the
right-handed trefoil or a closed manifold obtained by doing surgery along it
with framing k ∈ Z. In particular, with framing −1 we obtain the dodecahedral space.
The fixed braid representing V is Σ1

3 and we have:

- Relations for the twisted conjugation:

Σ1
3 · a±1

1 = (a1a2)
−1a±1

2 (a1a2) · Σ1
3

Σ1
3 · a±1

2 = (a2a1a2)
−1a±1

1 (a2a1a2) · Σ1
3

- Combed algebraic band moves: For β1, β2 ∈ B2,n we have:

β1β2 ∼ β′1 σ−1
n+1 tk2,n σ±1

n σn+1 β′2 r

where r = λn(a2)σn+1λn (a−1
2 a1a2) σ1

2λ−1
n σ−1

n+1 (a−1
2 a−1

1 a2a1a2) λ−1
n σn+1

is the combing through the fixed braid of the parted moving strands parallel to the two
surgery strands, t2,n = λnakλ

−1
n , and where β′1, β

′
2 ∈ B2,n+2 are the words β1, β2 with the



26 S. LAMBROPOULOU AND C. P. ROURKE

substitutions:

a±1
1 ←→ ([λ−1

n−1(σnσ
2
n+1σn)λn−1] a1 [λ−1

n−1(σnσ
2
n+1σ

−1
n )−1λn−1])

±1
,

a±1
2 ←→ ([λ−1

n−1(σnσ
2
n+1σ

−1
n )λn−1] a2)

±1
.

References

[1] J.W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9, 93–95
(1923).

[2] J.S. Birman, “Braids, links and mapping class groups”, Ann. of Math. Stud. 82, Princeton Uni-
versity Press, Princeton, 1974.
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